Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We find that lineages begin to split when cells leave the tip HSC population, marked by high Sca-1 and CD201 expression. Downstream, HSCs either retain high Sca-1 expression and the ability to generate lymphocytes, or irreversibly reduce Sca-1 level and enter into erythro-myelopoiesis or thrombopoiesis. Thrombopoiesis is the sum of two pathways that make comparable contributions in steady state, a long route via multipotent progenitors and CD48 hi megakaryocyte progenitors (MkPs), and a short route from HSCs to developmentally distinct CD48 −/lo MkPs. Enhanced thrombopoietin signaling differentially accelerates the short pathway, enabling a rapid response to increasing demand. In sum, we provide a blueprint for mapping physiological differentiation fluxes from HSCs and decipher two functionally distinct pathways of native thrombopoiesis.
Details
Original language | English |
---|---|
Article number | 4504 |
Journal | Nature communications |
Volume | 13 |
Early online date | 3 Aug 2022 |
Publication status | Published - Dec 2022 |
Peer-reviewed | Yes |
External IDs
Scopus | 85135341156 |
---|---|
PubMed | 35922411 |
WOS | 000835788400023 |
Mendeley | 5258789f-230e-36c0-bcd2-4de8b53c0d16 |
unpaywall | 10.1038/s41467-022-31914-z |
ORCID | /0000-0003-4306-930X/work/141545230 |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
Subject groups, research areas, subject areas according to Destatis
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- Cell Differentiation/physiology, Cell Lineage, Hematopoietic Stem Cells/metabolism, Myelopoiesis, Thrombopoiesis/physiology