Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons (GNRs) with atomically precise widths, edge terminations and dopants, which facilitate the tunning of their electronic structures. Here, we report the synthesis of novel sulfur-doped cove-edged GNRs (S-CGNRs) on Au(111) from a specifically designed precursor containing thiophene rings. Scanning tunneling microscopy and non-contact atomic force microscopy measurements elucidate the formation of S-CGNRs through subsequent polymerization and cyclodehydrogenation, which further result in crosslinked branched structures. Scanning tunneling spectroscopy results reveal the conduction band minimum of the S-CGNR locates at 1.2 eV. First-principles calculations show that the S-CGNR possesses an energy bandgap of 1.17 eV, which is evidently smaller than that of an undoped cove-edged GNR (1.7 eV), suggesting effective tuning of the bandgap by introducing sulfur atoms. Further increasing the coverage of precursors close to a monolayer results in the formation of linear-shaped S-CGNRs. The fabrication of S-CGNRs provides one more candidate in the GNR toolbox and promotes the future applications of heteroatom-doped graphene nanostructures.

Details

Original languageEnglish
Article number077306
JournalChinese Physics B
Volume30
Issue number7
Publication statusPublished - Jul 2021
Peer-reviewedYes

Keywords

ASJC Scopus subject areas

Keywords

  • non-contact atomic force microscopy, on-surface synthesis, scanning tunneling microscopy, sulfur-doped cove-edged graphene nanoribbons