Exploiting loop-array dependencies to accelerate the design space exploration with high level synthesis

Research output: Contribution to book/conference proceedings/anthology/reportConference contributionContributedpeer-review

Contributors

  • Nam Khanh Pham - , Agency for Science, Technology and Research, Singapore, National University of Singapore (Author)
  • Amit Kumar Singh - , University of York (Author)
  • Akash Kumar - , National University of Singapore (Author)
  • Mi Mi Aung Khin - , Agency for Science, Technology and Research, Singapore (Author)

Abstract

Recently, the requirement of shortened design cycles has led to rapid development of High Level Synthesis (HLS) tools that convert system level descriptions in a high level language into efficient hardware designs. Due to the high level of abstraction, HLS tools can easily provide multiple hardware designs from the same behavioral description. Therefore, they allow designers to explore various architectural options for different design objectives. However, such exploration has exponential complexity, making it practically impossible to explore the entire design space. The conventional approaches to reduce the design space exploration (DSE) complexity do not analyze the structure of the design space to limit the number of design points. To fill such a gap, we explore the structure of the design space by analyzing the dependencies between loops and arrays. We represent these dependencies as a graph that is used to reduce the dimensions of the design space. Moreover, we also examine the access pattern of the array and utilize it to find the efficient partition of arrays for each loop optimization parameter set. The experimental results show that our approach provides almost the same quality of result as the exhaustive DSE approach while significantly reducing the exploration time with an average of speed-up of 14x.

Details

Original languageEnglish
Title of host publication2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)
Place of PublicationGrenoble
PublisherIEEE Xplore
Pages157-162
Number of pages6
ISBN (electronic)978-3-9815-3705-5, 978-3-9815-3704-8
Publication statusPublished - 22 Apr 2015
Peer-reviewedYes
Externally publishedYes

Publication series

SeriesDesign, Automation and Test in Europe Conference and Exhibition (DATE)
ISSN1530-1591

Conference

Title2015 Design, Automation and Test in Europe Conference and Exhibition, DATE 2015
Duration9 - 13 March 2015
CityGrenoble
CountryFrance

Keywords

Research priority areas of TU Dresden

ASJC Scopus subject areas