Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence
Research output: Contribution to book/Conference proceedings/Anthology/Report › Conference contribution › Contributed › peer-review
Contributors
Abstract
Wake vortices-strong, coherent air turbulences created by aircrafts-pose a significant risk to aviation safety and therefore require accurate and reliable detection methods. In this paper, we present an advanced, explainable machine learning method that utilizes Light Detection and Ranging (LiDAR) data for effective wake vortex detection. Our method leverages a dynamic graph CNN (DGCNN) with semantic segmentation to partition a 3D LiDAR point cloud into meaningful segments. Further refinement is achieved through clustering techniques. A novel feature of our research is the use of a perturbation-based explanation technique, which clarifies the model's decision-making processes for air traffic regulators and controllers, increasing transparency and building trust. Our experimental results, based on measured and simulated LiDAR scans compared against four baseline methods, underscore the effectiveness and reliability of our approach. This combination of semantic segmentation and clustering for real-time wake vortex tracking significantly advances aviation safety measures, ensuring that these are both effective and comprehensible.
Details
| Original language | English |
|---|---|
| Title of host publication | KDD 2025 - Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| Publisher | Association for Computing Machinery |
| Pages | 2504-2513 |
| Number of pages | 10 |
| ISBN (electronic) | 979-8-4007-1245-6 |
| Publication status | Published - 20 Jul 2025 |
| Peer-reviewed | Yes |
Conference
| Title | 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
|---|---|
| Abbreviated title | KDD 2025 |
| Conference number | 31 |
| Duration | 3 - 7 August 2025 |
| Website | |
| Location | Toronto Convention Centre |
| City | Toronto |
| Country | Canada |
External IDs
| ORCID | /0000-0001-5458-8645/work/196695991 |
|---|
Keywords
ASJC Scopus subject areas
Keywords
- 3d point cloud segmentation, explainability, lidar scan, wake vortex detection