Experimental investigation of the role of the triplet pairing in the superconducting spin-valve effect

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • P. V. Leksin - , RAS - Kazan Scientific Center, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • A. A. Kamashev - , RAS - Kazan Scientific Center (Author)
  • N. N. Garif’yanov - , RAS - Kazan Scientific Center (Author)
  • A. A. Validov - , RAS - Kazan Scientific Center (Author)
  • Ya V. Fominov - , RAS - Landau Institute for Theoretical Physics, Moscow Institute of Physics and Technology (Author)
  • J. Schumann - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • V. E. Kataev - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • B. Büchner - , Chair of Experimental Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • I. A. Garifullin - , RAS - Kazan Scientific Center (Author)

Abstract

An important role of the morphology of a superconducting layer in the superconducting spin-valve effect has been established. The triplet pairing induced by the superconductor/ferromagnet proximity effect has been experimentally investigated for samples CoOx/Py1/Cu/Py2/Cu/Pb (where Py = Ni0.81Fe0.19) with a smooth superconducting layer. The optimization of the parameters of this structure has demonstrated a complete switching between the normal and superconducting states with a change in the relative orientation of magnetizations of the ferromagnetic layers from the antiparallel to orthogonal orientation. A pure triplet contribution has been observed for the sample with a permalloy layer thickness at which the superconducting spin-valve effect vanishes. A direct comparison of the experimental data with the theoretical calculation of the temperature of the transition to the superconducting state has been performed for the first time.

Details

Original languageEnglish
Pages (from-to)2165-2176
Number of pages12
JournalPhysics of the solid state
Volume58
Issue number11
Publication statusPublished - 1 Nov 2016
Peer-reviewedYes