Existence of distinct tyrosylprotein sulfotransferase genes: molecular characterization of tyrosylprotein sulfotransferase-2.

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Tyrosylprotein sulfotransferase (TPST) is a 54- to 50-kDa integral membrane glycoprotein of the trans-Golgi network found in essentially all tissues investigated, catalyzing the tyrosine O-sulfation of soluble and membrane proteins passing through this compartment. Here we describe (i) an approach to identify the TPST protein, referred to as MSC (modification after substrate crosslinking) labeling, which is based on the crosslinking of a substrate peptide to TPST followed by intramolecular [35S]sulfate transfer from the cosubstrate 3'-phosphoadenosine 5'-phosphosulfate (PAPS); and (ii) the molecular characterization of a human TPST, referred to as TPST-2, whose sequence is distinct from that reported [TPST-1; Ouyang, Y.-B., Lane, W. S. & Moore, K. L. (1998) Proc. Natl. Acad. Sci. USA 95, 2896-2901] while this study was in progress. Human TPST-2 is a type II transmembrane protein of 377 aa residues that is encoded by a ubiquitously expressed 1.9-kb mRNA originating from seven exons of a gene located on chromosome 22 (22q12.1). A 304-residue segment in the luminal domain of TPST-2 shows 75% amino acid identity to the corresponding segment of TPST-1, including conservation of the residues implicated in the binding of PAPS. Expression of the TPST-2 cDNA in CHO cells resulted in an approximately 13-fold increase in both TPST protein, as determined by MSC labeling, and TPST activity. A predicted 359-residue type II transmembrane protein in Caenorhabditis elegans with 45% amino acid identity to TPST-2 in a 257-residue segment of the luminal domain points to the evolutionary conservation of the TPST protein family.

Details

Original languageEnglish
Pages (from-to)11134-11139
JournalProceedings of the National Academy of Sciences of the United States of America : PNAS
Volume95
Issue number19
Publication statusPublished - Sept 1998
Peer-reviewedYes

External IDs

PubMed 9736702
PubMed PMC21608
Scopus 0032530962

Keywords