Evaluating artificial intelligence software for delineating hemorrhage extent on CT brain imaging in stroke: AI delineation of ICH on CT
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
BACKGROUND: The extent and distribution of intracranial hemorrhage (ICH) directly affects clinical management. Artificial intelligence (AI) software can detect and may delineate ICH extent on brain CT. We evaluated e-ASPECTS software (Brainomix Ltd.) performance for ICH delineation.
METHODS: We qualitatively assessed software delineation of ICH on CT using patients from six stroke trials. We assessed hemorrhage delineation in five compartments: lobar, deep, posterior fossa, intraventricular, extra-axial. We categorized delineation as excellent, good, moderate, or poor. We assessed quality of software delineation with number of affected compartments in univariate analysis (Kruskall-Wallis test) and ICH location using logistic regression (dependent variable: dichotomous delineation categories 'excellent-good' versus 'moderate-poor'), and report odds ratios (OR) and 95 % confidence intervals (95 %CI).
RESULTS: From 651 patients with ICH (median age 75 years, 53 % male), we included 628 with assessable CTs. Software delineation of ICH extent was 'excellent' in 189/628 (30 %), 'good' in 255/628 (41 %), 'moderate' in 127/628 (20 %), and 'poor' in 57/628 cases (9 %). The quality of software delineation of ICH was better when fewer compartments were affected (Z = 3.61-6.27; p = 0.0063). Software delineation of ICH extent was more likely to be 'excellent-good' quality when lobar alone (OR = 1.56, 95 %CI = 0.97-2.53) but 'moderate-poor' with any intraventricular (OR = 0.56, 95 %CI = 0.39-0.81, p = 0.002) or any extra-axial (OR = 0.41, 95 %CI = 0.27-0.62, p<0.001) extension.
CONCLUSIONS: Delineation of ICH extent on stroke CT scans by AI software was excellent or good in 71 % of cases but was more likely to over- or under-estimate extent when ICH was either more extensive, intraventricular, or extra-axial.
Details
Original language | English |
---|---|
Article number | 107512 |
Number of pages | 4 |
Journal | Journal of Stroke and Cerebrovascular Diseases |
Volume | 33(2024) |
Issue number | 1 |
Publication status | Published - Jan 2024 |
Peer-reviewed | Yes |
External IDs
Scopus | 85178235645 |
---|
Keywords
Keywords
- Humans, Male, Aged, Female, Cerebral Hemorrhage/diagnostic imaging, Artificial Intelligence, Stroke/diagnostic imaging, Intracranial Hemorrhages/diagnostic imaging, Tomography, X-Ray Computed, Software, Neuroimaging