Energieeffiziente integrierte Schaltungen zur Basisbandsignalverarbeitung und Zeitsynchronisation für drahtgebundene Ethernet-Echtzeitkommunikation
Research output: Types of thesis › Doctoral thesis
Contributors
Abstract
In dieser Arbeit wird eine genaue Zeitsynchronisation über kupferbasierte Ethernetsysteme sowie der Entwurf von Schaltungen für die Bitübertragungsschicht (Physical Layer, PHY) in solchen Ethernetsystemen untersucht. Dabei wird der Entwurf eines integrierten Schaltkreises für den Standard 100Base-TX vorgestellt. Dieser PHY-Chip ermöglicht die Datenübertragung mit einer Datenrate von 100 MBit/s über verdrillte Kupferkabel und stellt darüber hinaus eine genaue Uhr bereit, welche zwischen den verbundenen Netzknoten synchronisiert werden kann. Dieser Schaltkreis ist insbesondere für Industrieanwendungen gedacht, bei denen verschiedene Prozesse zeitlich synchronisiert werden müssen. Prinzipiell ist der PHY-Chip jedoch universell für verschiedenste Anwendungen zur Zeitsynchronisation einsetzbar. Um die Genauigkeit der Zeitsynchronisation gegenüber herkömmlichen Ansätzen zu steigern, werden verschiedene Techniken untersucht und in dem entworfenen Schaltkreis eingesetzt. So wird die Phase der Taktsignale in feinen Schritten eingestellt und auch gemessen, sodass die Auflösung der Zeitstempel erheblich verbessert wird. Zu diesem Zweck wird ein sogenannter Digital-To-Phase Converter (DPC) eingesetzt, der 256 verschiedene Taktphasen des 125 MHz Systemtaktes bereitstellt. Für die eigentliche Zeitsynchronisation wird ein Proportional-Integral-Regler verwendet. Basierend auf einer theoretischen Rauschanalyse wird eine Methode vorgestellt, mit der die Parameter dieses Reglers so dimensioniert werden können, dass der Zeitfehler im eingeschwungenen Zustand möglichst klein wird. Darüber hinaus werden weitere Störeinflüsse analysiert und es werden geeignete Maßnahmen entwickelt, um diese zu kompensieren. So wird eine adaptive Kompensation eines Eintonstörers sowie eine Kalibrierung zur automatischen Kompensation von Asymmetrien im Kabel vorgestellt. All diese Punkte helfen, eine hervorragende Genauigkeit der Zeitsynchronisation zu ermöglichen, was durch umfangreiche Messungen verifiziert wird. Insgesamt weist der gemessene Zeitfehler in einem Punkt-zu-Punkt-Szenario eine Standardabweichung von 64 ps und einen Mittelwert unterhalb von 100 ps auf. Dies stellt eine erhebliche Verbesserung gegenüber konventionellen Lösungen zur Zeitsynchronisation über kupferbasiertes Ethernet dar, mit denen Genauigkeiten im Nanosekundenbereich erreicht werden. Als zweites Ziel dieser Arbeit wird der PHY-Chip für eine möglichst niedrige Leistungsaufnahme optimiert. Um dies zu erreichen, werden insbesondere der Leitungstreiber im Sender und der Equalizer im Empfänger systematisch optimiert. So werden zwei verschiedene Topologien von Leitungstreibern untersucht und verglichen. Beide weisen eine Leistungsaufnahme von etwa 24 mW auf. Im Vergleich zum Stand der Technik sind dies die beiden niedrigsten Werte für Leitungstreiber für den Standard 100Base-TX. Der gesamte PHY-Chip, der in einer 180 nm Technologie implementiert wurde, weist durch die zahlreichen Optimierungen eine geringe Leistungsaufnahme von maximal 69 mW auf, was ebenfalls einen Rekordwert im Vergleich mit dem Stand der Technik darstellt (80 mW). Die einzelnen Schaltungen wurden sowohl simulativ als auch mit ausführlichen Messungen verifiziert. Für den gesamten Link wird eine Bitfehlerrate besser als 10⁻¹² bei verschiedenen Kabeln bis zu 120 m Länge erreicht.
Details
Original language | German |
---|---|
Awarding Institution | |
Supervisors/Advisors |
|
Publication status | Published - 28 Jan 2022 |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis