Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Volker Sluka - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Tobias Schneider - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Rodolfo A. Gallardo - , Universidad Técnica Federico Santa Maria, Universidad de Santiago de Chile (Author)
  • Attila Kákay - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Markus Weigand - , Max Planck Institute for Intelligent Systems (Author)
  • Tobias Warnatz - , Helmholtz-Zentrum Dresden-Rossendorf, Uppsala University (Author)
  • Roland Mattheis - , Leibniz Institute of Photonic Technology (Author)
  • Alejandro Roldán-Molina - , Universidad de Aysén (Author)
  • Pedro Landeros - , Universidad Técnica Federico Santa Maria, Universidad de Santiago de Chile (Author)
  • Vasil Tiberkevich - , Oakland University (Author)
  • Andrei Slavin - , Oakland University (Author)
  • Gisela Schütz - , Max Planck Institute for Intelligent Systems (Author)
  • Artur Erbe - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Alina Deac - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Jürgen Lindner - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Jörg Raabe - , Paul Scherrer Institute (Author)
  • Jürgen Fassbender - , Chair of Applied Solid State Physics, Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Sebastian Wintz - , Helmholtz-Zentrum Dresden-Rossendorf, Paul Scherrer Institute (Author)

Abstract

Spin waves offer intriguing perspectives for computing and signal processing, because their damping can be lower than the ohmic losses in conventional complementary metal–oxide–semiconductor (CMOS) circuits. Magnetic domain walls show considerable potential as magnonic waveguides for on-chip control of the spatial extent and propagation of spin waves. However, low-loss guidance of spin waves with nanoscale wavelengths and around angled tracks remains to be shown. Here, we demonstrate spin wave control using natural anisotropic features of magnetic order in an interlayer exchange-coupled ferromagnetic bilayer. We employ scanning transmission X-ray microscopy to image the generation of spin waves and their propagation across distances exceeding multiples of the wavelength. Spin waves propagate in extended planar geometries as well as along straight or curved one-dimensional domain walls. We observe wavelengths between 1 μm and 150 nm, with excitation frequencies ranging from 250 MHz to 3 GHz. Our results show routes towards the practical implementation of magnonic waveguides in the form of domain walls in future spin wave logic and computational circuits.

Details

Original languageEnglish
Pages (from-to)328-333
Number of pages6
JournalNature nanotechnology
Volume14
Issue number4
Publication statusPublished - 1 Apr 2019
Peer-reviewedYes

External IDs

PubMed 30804478