eIF4F is a thermo-sensing regulatory node in the translational heat shock response
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.
Details
Original language | English |
---|---|
Pages (from-to) | 1727-1741 |
Number of pages | 27 |
Journal | Molecular cell |
Volume | 84 (2024) |
Issue number | 9 |
Publication status | Published - 2 May 2024 |
Peer-reviewed | Yes |
External IDs
PubMed | 38547866 |
---|---|
ORCID | /0000-0003-4017-6505/work/161409856 |
ORCID | /0000-0003-0475-3790/work/161889533 |
Keywords
ASJC Scopus subject areas
Keywords
- biomolecular condensates, budding yeast, eIF4A, eIF4F, eIF4G, heat shock, mRNPs, stress granules, thermosensor, translation, Gene Expression Regulation, Fungal, Protein Biosynthesis, Heat-Shock Response/genetics, Saccharomyces cerevisiae Proteins/metabolism, Eukaryotic Initiation Factor-4F/metabolism, Eukaryotic Initiation Factor-4G/metabolism, Ribonucleoproteins/metabolism, Saccharomyces cerevisiae/genetics, RNA, Messenger/genetics, Eukaryotic Initiation Factor-4E/metabolism, Protein Binding, RNA, Fungal/metabolism, Eukaryotic Initiation Factor-4A/metabolism, Poly(A)-Binding Proteins