Effects of photon recycling and scattering in high-performance perovskite solar cells

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Efficient external radiation is essential for solar cells to achieve high power conversion efficiency (PCE). The classical limit of 1/2n2 (n, refractive index) for electroluminescence quantum efficiency (ELQE) has recently been approached by perovskite solar cells (PSCs). Photon recycling (PR) and light scattering can provide an opportunity to surpass this limit. We investigate the role of PR and scattering in practical device operation using a radiative PSC with an ELQE (13.7% at 1 sun) that significantly surpasses the classical limit (7.4%). We experimentally analyze the contributions of PR and scattering to this strong radiation. A novel optical model reveals an increase of 39 mV in the voltage of our PSC. This analysis can provide design principles for future PSCs to approach the Shockley-Queisser efficiency limit.

Details

Original languageEnglish
Article numbereabj1363
JournalScience advances
Volume7
Issue number52
Publication statusPublished - Dec 2021
Peer-reviewedYes

External IDs

Scopus 85122022931

Keywords