Dynamics of the magnetoelastic phase transition and adiabatic temperature change in Mn1.3 Fe0.7P0.5Si0.55

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • M. Fries - , Technische Universität Darmstadt (Author)
  • T. Gottschall - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • F. Scheibel - , Technische Universität Darmstadt, University of Duisburg-Essen (Author)
  • L. Pfeuffer - , Technische Universität Darmstadt (Author)
  • K. P. Skokov - , Technische Universität Darmstadt (Author)
  • I. Skourski - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • M. Acet - , University of Duisburg-Essen (Author)
  • M. Farle - , University of Duisburg-Essen (Author)
  • J. Wosnitza - , Chair of Physics of High Magnetic Fields, Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • O. Gutfleisch - , Technische Universität Darmstadt (Author)

Abstract

The adiabatic temperature change ΔT ad of a Mn 1.3 Fe 0.7 P 0.5 Si 0.55 Fe 2 P-type alloy was measured under different magnetic field-sweep rates from 0.93 Ts −1 to 2870 Ts −1 . We find a field-sweep-rate independent magnetocaloric effect due to a partial alignment of magnetic moments in the paramagnetic region overlapping with the magnetocaloric effect of the first-order phase transition. Additionally, the first-order phase transition is not completed even in fields up to 20 T leading to a non-saturating behavior of ΔT ad . Measurements in different pulsed fields reveal that the first-order phase transition cannot follow the fast field changes as previously assumed, resulting in a distinct field-dependent hysteresis in ΔT ad .

Details

Original languageEnglish
Pages (from-to)287-291
Number of pages5
JournalJournal of magnetism and magnetic materials
Volume477
Publication statusPublished - 1 May 2019
Peer-reviewedYes

Keywords

Keywords

  • Dynamical effects, Fe P, First-order transition, High magnetic-fields, Magnetic cooling