Drought impacts on terrestrial primary production underestimated by satellite monitoring

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Benjamin D. Stocker - , CREAF - Centre for Ecological Research and Forestry Applications (Author)
  • Jakob Zscheischler - , ETH Zurich, University of Bern (Author)
  • Trevor F. Keenan - , Lawrence Berkeley National Laboratory, University of California at Berkeley (Author)
  • I. Colin Prentice - , Imperial College London (Author)
  • Sonia I. Seneviratne - , ETH Zurich (Author)
  • Josep Peñuelas - , CREAF - Centre for Ecological Research and Forestry Applications, Spanish National Research Council (CSIC) (Author)

Abstract

Satellite retrievals of information about the Earth’s surface are widely used to monitor global terrestrial photosynthesis and primary production and to examine the ecological impacts of droughts. Methods for estimating photosynthesis from space commonly combine information on vegetation greenness, incoming radiation, temperature and atmospheric demand for water (vapour-pressure deficit), but do not account for the direct effects of low soil moisture. They instead rely on vapour-pressure deficit as a proxy for dryness, despite widespread evidence that soil moisture deficits have a direct impact on vegetation, independent of vapour-pressure deficit. Here, we use a globally distributed measurement network to assess the effect of soil moisture on photosynthesis, and identify a common bias in an ensemble of satellite-based estimates of photosynthesis that is governed by the magnitude of soil moisture effects on photosynthetic light-use efficiency. We develop methods to account for the influence of soil moisture and estimate that soil moisture effects reduce global annual photosynthesis by ~15%, increase interannual variability by more than 100% across 25% of the global vegetated land surface, and amplify the impacts of extreme events on primary production. These results demonstrate the importance of soil moisture effects for monitoring carbon-cycle variability and drought impacts on vegetation productivity from space.

Details

Original languageEnglish
Pages (from-to)264-270
Number of pages7
JournalNature geoscience
Volume12
Issue number4
Publication statusPublished - 1 Apr 2019
Peer-reviewedYes
Externally publishedYes

Keywords

Sustainable Development Goals

ASJC Scopus subject areas