Doubly-Exponential Identification via Channels: Code Constructions and Bounds

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Contributors

  • Onur Gunlu - , University of Siegen (Author)
  • Jorg Kliewer - , New Jersey Institute of Technology (Author)
  • Rafael F. Schaefer - , University of Siegen (Author)
  • Vladimir Sidorenko - , Technical University of Munich (Author)

Abstract

Consider the identification (ID) via channels problem, where a receiver wants to decide whether the transmitted identifier is its identifier, rather than decoding the identifier. This model allows to transmit identifiers whose size scales doubly-exponentially in the blocklength, unlike common transmission (or channel) codes whose size scales exponentially. It suffices to use binary constant-weight codes (CWCs) to achieve the ID capacity. By relating the parameters of a binary CWC to the minimum distance of a code and using higher-order correlation moments, two upper bounds on the binary CWC size are proposed. These bounds are shown to be upper bounds also on the identifier sizes for ID codes constructed by using binary CWCs. We propose two code constructions based on optical orthogonal codes, which are used in optical multiple access schemes, have constant-weight codewords, and satisfy cyclic cross-correlation and autocorrelation constraints. These constructions are modified and concatenated with outer Reed-Solomon codes to propose new binary CWCs optimal for ID. Improvements to the finite-parameter performance of both our and existing code constructions are shown by using outer codes with larger minimum distance vs. blocklength ratios. We also illustrate ID performance regimes for which our ID code constructions perform significantly better than existing constructions.

Details

Original languageEnglish
Title of host publication2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1147-1152
Number of pages6
ISBN (electronic)978-1-5386-8209-8
Publication statusPublished - 12 Jul 2021
Peer-reviewedYes
Externally publishedYes

Publication series

SeriesIEEE International Symposium on Information Theory
Volume2021-July
ISSN2157-8095

Conference

Title2021 IEEE International Symposium on Information Theory, ISIT 2021
Duration12 - 20 July 2021
CityVirtual, Melbourne
CountryAustralia

External IDs

ORCID /0000-0002-1702-9075/work/165878275