Distribution of transpulmonary pressure during one-lung ventilation in pigs at different body positions

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Background. Global and regional transpulmonary pressure (PL) during one-lung ventilation (OLV) is poorly characterized. We hypothesized that global and regional PL and driving PL (ΔPL) increase during protective low tidal volume OLV compared to two-lung ventilation (TLV), and vary with body position. Methods. In sixteen anesthetized juvenile pigs, intra-pleural pressure sensors were placed in ventral, dorsal, and caudal zones of the left hemithorax by video-assisted thoracoscopy. A right thoracotomy was performed and lipopolysaccharide administered intravenously to mimic the inflammatory response due to thoracic surgery. Animals were ventilated in a volume-controlled mode with a tidal volume (VT) of 6 mL kg−1 during TLV and of 5 mL kg−1 during OLV and a positive end-expiratory pressure (PEEP) of 5 cmH2O. Global and local transpulmonary pressures were calculated. Lung instability was defined as end-expiratory PL<2.9 cmH2O according to previous investigations. Variables were acquired during TLV (TLVsupine), left lung ventilation in supine (OLVsupine), semilateral (OLVsemilateral), lateral (OLVlateral) and prone (OLVprone) positions randomized according to Latin-square sequence. Effects of position were tested using repeated measures ANOVA. Results. End-expiratory PL and ΔPL were higher during OLVsupine than TLVsupine. During OLV, regional end-inspiratory PL and ΔPL did not differ significantly among body positions. Yet, end-expiratory PL was lower in semilateral (ventral: 4.8 ± 2.9 cmH2O; caudal: 3.1 ± 2.6 cmH2O) and lateral (ventral: 1.9 ± 3.3 cmH2O; caudal: 2.7 ± 1.7 cmH2O) compared to supine (ventral: 4.8 ± 2.9 cmH2O; caudal: 3.1 ± 2.6 cmH2O) and prone position (ventral: 1.7 ± 2.5 cmH2O; caudal: 3.3 ± 1.6 cmH2O), mainly in ventral (p ≤ 0.001) and caudal (p = 0.007) regions. Lung instability was detected more often in semilateral (26 out of 48 measurements; p = 0.012) and lateral (29 out of 48 measurements, p < 0.001) as compared to supine position (15 out of 48 measurements), and more often in lateral as compared to prone position (19 out of 48 measurements, p = 0.027). Conclusion. Compared to TLV, OLV increased lung stress. Body position did not affect stress of the ventilated lung during OLV, but lung stability was lowest in semilateral and lateral decubitus position.

Details

Original languageEnglish
Article number1204531
Number of pages8
JournalFrontiers in physiology
Volume14(2023)
Publication statusPublished - 4 Aug 2023
Peer-reviewedYes

External IDs

ORCID /0000-0002-5385-9607/work/141544727
ORCID /0000-0003-4397-1467/work/142238064
ORCID /0000-0003-2185-1819/work/142245097
WOS 001050565200001

Keywords

Research priority areas of TU Dresden

DFG Classification of Subject Areas according to Review Boards

ASJC Scopus subject areas

Keywords

  • local pleural pressure, local transpulmonary pressure, mechanical power, OLV, open pneumothorax, thoracic surgery, VILI, Thoracic surgery, Mechanical power, Olv, Vili, Local pleural pressure, Open pneumothorax, Local transpulmonary pressure

Library keywords