Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by “Isotope-Editing”

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Jana Oertel - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Susanne Sachs - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Katrin Flemming - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Muhammad Hassan Obeid - , Atomic Energy Commission of Syria (Author)
  • Karim Fahmy - , Helmholtz-Zentrum Dresden-Rossendorf, TUD Dresden University of Technology, Clusters of Excellence PoL: Physics of Life (Author)

Abstract

Studying the toxicity of chemical compounds using isothermal microcalorimetry (IMC), which monitors the metabolic heat from living microorganisms, is a rapidly expanding field. The unprecedented sensitivity of IMC is particularly attractive for studies at low levels of stressors, where lethality-based data are inadequate. We have revealed via IMC the effect of low dose rates from radioactive β-decay on bacterial metabolism. The low dose rate regime (<400 µGyh−1) is typical of radioactively contaminated environmental sites, where chemical toxicity and radioactivity-mediated effects coexist without a predominance or specific characteristic of either of them. We found that IMC allows distinguishing the two sources of metabolic interference on the basis of “isotope-editing” and advanced thermogram analyses. The stable and radioactive europium isotopes 153Eu and 152Eu, respectively, were employed in monitoring Lactococcus lactis cultures via IMC. β-emission (electrons) was found to increase initial culture growth by increased nutrient uptake efficiency, which compensates for a reduced maximal cell division rate. Direct adsorption of the radionuclide to the biomass, revealed by mass spectrometry, is critical for both the initial stress response and the “dilution” of radioactivity-mediated damage at later culture stages, which are dominated by the chemical toxicity of Eu.

Details

Original languageEnglish
Article number584
JournalMicroorganisms
Volume11
Issue number3
Publication statusPublished - Mar 2023
Peer-reviewedYes

Keywords

Keywords

  • bacteria, growth rate, isothermal microcalorimetry, low dose, metabolic monitoring