Disentangling the Unusual Magnetic Anisotropy of the Near-Room-Temperature Ferromagnet Fe4GeTe2

Research output: Contribution to journalResearch articleContributedpeer-review



In the quest for 2D conducting materials with high ferromagnetic ordering temperature the new family of the layered FenGeTe2 compounds, especially the near-room-temperature ferromagnet Fe4GeTe2, receives a significant attention. Fe4GeTe2 features a peculiar spin reorientation transition at TSR ≈ 110 K suggesting a non-trivial temperature evolution of the magnetic anisotropy (MA)—one of the main contributors to the stabilization of the magnetic order in the low-dimensional systems. An electron spin resonance (ESR) spectroscopic study reported here provides quantitative insights into the unusual magnetic anisotropy of Fe4GeTe2. At high temperatures the total MA is mostly given by the demagnetization effect with a small contribution of the counteracting intrinsic magnetic anisotropy of an easy-axis type, whose growth below a characteristic temperature Tshape ≈ 150 K renders the sample seemingly isotropic at TSR. Below one further temperature Td ≈ 50 K the intrinsic MA becomes even more complex. Importantly, all the characteristic temperatures found in the ESR experiment match those observed in transport measurements, suggesting an inherent coupling between magnetic and electronic degrees of freedom in Fe4GeTe2. This finding together with the observed signatures of the intrinsic two-dimensionality should facilitate optimization routes for the use of Fe4GeTe2 in the magneto-electronic devices, potentially even in the monolayer limit.


Original languageEnglish
JournalAdvanced functional materials
Publication statusPublished - 2024

External IDs

Mendeley 8ace7c1f-c9ee-3ab4-833c-b2a5ceb5167e
ORCID /0000-0002-2438-0672/work/160049892



  • FeGeTe, ferromagnet, ferromagnetic resonance, magnetic anisotropy, spin dynamics, two-dimensionality, van der Waals, Fe4GeTe2