Direct conversion of white phosphorus to versatile phosphorus transfer reagents via oxidative onioation

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

The main feedstock for the value-added phosphorus chemicals used in industry and research is white phosphorus (P 4), from which the key intermediate for forming P(III) compounds is PCl 3. Owing to its high reactivity, syntheses based on PCl 3 are often accompanied by product mixtures and laborious work-up procedures, so an alternative process to form a viable P(III) transfer reagent is desirable. Our concept of oxidative onioation, where white phosphorus is selectively converted into triflate salts of versatile P 1 transfer reagents such as [P(L N) 3][OTf] 3 (L N is a cationic, N-based substituent; that is, 4-dimethylaminopyridinio), provides a convenient alternative for the implementation of P–O, P–N and P–C bonds while circumventing the use of PCl 3. We use p-block element compounds of type R nE (for example, Ph 3As or PhI) to access weak adducts between nitrogen Lewis bases L N and the corresponding dications [R nEL N] 2+. The proposed equilibrium between [R nEL N] 2+ + L N and [R nE(L N) 2] 2+ allows for the complete oxidative onioation of all six P–P bonds in P 4 to yield highly reactive and versatile trications [P(L N) 3] 3+. [Figure not available: see fulltext.]

Details

Original languageEnglish
Pages (from-to)384-391
Number of pages8
JournalNature Chemistry
Volume14
Issue number4
Publication statusPublished - Apr 2022
Peer-reviewedYes

External IDs

Scopus 85127521191
WOS 000778084100005
Mendeley 7906f00a-a355-3786-93bb-07af3a5c6778
unpaywall 10.1038/s41557-022-00913-4
ORCID /0000-0001-7323-7816/work/142257421

Keywords