Direct Construction of Isomeric Benzobisoxazole-Vinylene-Linked Covalent Organic Frameworks with Distinct Photocatalytic Properties
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Vinylene/olefin-linked two-dimensional covalent organic frameworks (v-2D-COFs) have emerged as advanced semiconducting materials with excellent in-plane conjugation, high chemical stabilities, and precisely tunable electronic structures. Exploring new linkage chemistry for the reticular construction of v-2D-COFs remains in infancy and challenging. Herein, we present a solid-state benzobisoxazole-mediated aldol polycondensation reaction for the construction of two novel isomeric benzobisoxazole-bridged v-2D-COFs (v-2D-COF-NO1 and v-2D-COF-NO2) with trans and cis configurations of benzobisoxazole. Interestingly, the isomeric benzobisoxazole linkers endow the two v-2D-COFs with distinct optoelectronic and electrochemical properties, ranging from light absorption and emission to charge-transfer properties. When employed as the photocathode, v-2D-COF-NO1 exhibits a photocurrent of up to ∼18 μA/cm2under AM 1.5G irradiation at -0.3 V vs reversible hydrogen electrode (RHE), which is twice the value of v-2D-COF-NO2 (∼9.1 μA/cm2). With Pt as a cocatalyst, v-2D-COF-NO1 demonstrates a photocatalytic hydrogen evolution rate of ∼1.97 mmol h-1g-1, also in clear contrast to that of v-2D-COF-NO2 (∼0.86 mmol h-1g-1) under identical conditions. This work demonstrates the synthesis of v-2D-COFs via benzobisoxazole-mediated aldol polycondensation with isomeric structures and distinct photocatalytic properties.
Details
Original language | English |
---|---|
Pages (from-to) | 13953-13960 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 144 |
Issue number | 30 |
Publication status | Published - 3 Aug 2022 |
Peer-reviewed | Yes |
External IDs
PubMed | 35877552 |
---|