Development of load-bearing timber-glass composite shear wall elements

Research output: Contribution to book/conference proceedings/anthology/reportConference contributionContributed

Contributors

Abstract

Load-bearing timber-glass composite elements belong to the novel developments in the field of structural glass. Composite action is achieved by adhesively bonding the glass pane onto a timber substructure. Recent research works focus on shear walls in the building envelope. Glazing in façades and outer walls could contribute to the bracing of the structure or the stabilization of the façade itself. This paper presents a feasibility study of such timber-glass composite elements with a size of approximately 2.40 m x 2.40 m. Their full potential arises from the use of an adhesive of medium stiffness that exhibit rather small deformations compared to materials such as structural silicones. The performance of the components has been assessed in several experiments. The load-bearing capacity has been determined in a monotonous racking test and quasi-static reversed-cyclic tests on life-size specimens. A long-term creep test gives further proof of suitability. Finally, a prototype building comprising a load-bearing timber glass façade has been designed based on those full-scale shear wall components. This project also aims at working out the main construction details of the application of such elements as a façade. Special attention has been paid to achieve water and air-tightness, and to reduce thermal bridges.

Details

Original languageEnglish
Title of host publicationGlass Performance Days 2015
Pages377-382
Publication statusPublished - 2015
Peer-reviewedNo

Conference

TitleGlass Performance Days 2015
SubtitleInnovation - Business - Design
Abbreviated titleGPD 2015
Duration23 - 26 June 2015
Degree of recognitionInternational event
CityTampere
CountryFinland

External IDs

ORCID /0000-0001-8585-0482/work/142250278

Keywords

Research priority areas of TU Dresden

DFG Classification of Subject Areas according to Review Boards

Subject groups, research areas, subject areas according to Destatis

Keywords

  • structural glass, adhesive bonding, timber-glass composite, plate buckling, prefabrication