Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Sebastian Bauer - , University of Duisburg-Essen (Author)
  • Patrizio Neff - , University of Duisburg-Essen (Author)
  • Dirk Pauly - , Institute of Analysis, University of Duisburg-Essen (Author)
  • Gerhard Starke - , University of Duisburg-Essen (Author)

Abstract

Let Ω ⊂ ℝn, n ≥ 2, be a bounded Lipschitz domain and 1 < q < ∞. We prove the inequality ∥T∥Lq(Ω) ≤ CDD (∥ dev T∥Lq(Ω) + ∥ Div T∥Lq(Ω)) being valid for tensor fields T : Ω → ℝnxn with a normal boundary condition on some open and non-empty part Γν of the boundary ∂Ω. Here dev T = T - 1/n tr (T) · Id denotes the deviatoric part of the tensor T and Div is the divergence row-wise. Furthermore, we prove ∥T∥L2(Ω) ≤ CDSC (∥ dev sym T∥L2(Ω) + ∥ Curl T∥L2(Ω)) if n ≥ 3, ∥T∥L2(Ω) ≤ CDSDC (∥ dev sym T∥L2(Ω) + ∥ dev Curl T∥L2(Ω)) if n = 3, being valid for tensor fields T with a tangential boundary condition on some open and non-empty part Γτ of ∂Ω. Here, sym T = 1/2 (T + TT) denotes the symmetric part of T and Curl is the rotation row-wise.

Details

Original languageEnglish
Pages (from-to)112-133
Number of pages22
JournalESAIM - Control, Optimisation and Calculus of Variations
Volume22
Issue number1
Publication statusPublished - 1 Jan 2016
Peer-reviewedYes

External IDs

ORCID /0000-0003-4155-7297/work/145224256

Keywords

Keywords

  • Korn's inequality, Lie-algebra decomposition, Maxwell estimates, Poincaré's inequality, relaxed micromorphic model?