DeMAG predicts the effects of variants in clinically actionable genes by integrating structural and evolutionary epistatic features

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Federica Luppino - , Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden (CSBD) (Author)
  • Ivan A. Adzhubei - , Harvard University (Author)
  • Christopher A. Cassa - , Harvard University (Author)
  • Agnes Toth-Petroczy - , Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden (CSBD), TUD Dresden University of Technology, Clusters of Excellence PoL: Physics of Life (Author)

Abstract

Despite the increasing use of genomic sequencing in clinical practice, the interpretation of rare genetic variants remains challenging even in well-studied disease genes, resulting in many patients with Variants of Uncertain Significance (VUSs). Computational Variant Effect Predictors (VEPs) provide valuable evidence in variant assessment, but they are prone to misclassifying benign variants, contributing to false positives. Here, we develop Deciphering Mutations in Actionable Genes (DeMAG), a supervised classifier for missense variants trained using extensive diagnostic data available in 59 actionable disease genes (American College of Medical Genetics and Genomics Secondary Findings v2.0, ACMG SF v2.0). DeMAG improves performance over existing VEPs by reaching balanced specificity (82%) and sensitivity (94%) on clinical data, and includes a novel epistatic feature, the ‘partners score’, which leverages evolutionary and structural partnerships of residues. The ‘partners score’ provides a general framework for modeling epistatic interactions, integrating both clinical and functional information. We provide our tool and predictions for all missense variants in 316 clinically actionable disease genes (demag.org) to facilitate the interpretation of variants and improve clinical decision-making.

Details

Original languageEnglish
Article number2230
Number of pages14
JournalNature communications
Volume14
Issue number1
Publication statusPublished - 19 Apr 2023
Peer-reviewedYes

External IDs

PubMed 37076482