Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Malte Tiburcy - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)
  • James E. Hudson - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), University of Queensland (Author)
  • Paul Balfanz - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)
  • Susanne Schlick - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)
  • Tim Meyer - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)
  • Mei Ling Chang Liao - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)
  • Elif Levent - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)
  • Farah Raad - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)
  • Sebastian Zeidler - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)
  • Edgar Wingender - , University of Göttingen (Author)
  • Johannes Riegler - , Stanford University (Author)
  • Mouer Wang - , Stanford University (Author)
  • Joseph D. Gold - , Stanford University (Author)
  • Izhak Kehat - , Technion-Israel Institute of Technology (Author)
  • Erich Wettwer - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Institute of Pharmacology and Toxicology (Author)
  • Ursula Ravens - , Institute of Pharmacology and Toxicology (Author)
  • Pieterjan Dierickx - , Utrecht University (Author)
  • Linda W. Van Laake - , Utrecht University (Author)
  • Marie Jose Goumans - , Leiden University (Author)
  • Sara Khadjeh - , University of Göttingen (Author)
  • Karl Toischer - , University of Göttingen (Author)
  • Gerd Hasenfuss - , University of Göttingen (Author)
  • Larry A. Couture - , University of Antwerp (Author)
  • Andreas Unger - , Ruhr University Bochum (Author)
  • Wolfgang A. Linke - , Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), University of Göttingen, Ruhr University Bochum (Author)
  • Toshiyuki Araki - , New York University (Author)
  • Benjamin Neel - , New York University (Author)
  • Gordon Keller - , University of Toronto (Author)
  • Lior Gepstein - , Technion-Israel Institute of Technology (Author)
  • Joseph C. Wu - , Stanford University (Author)
  • Wolfram Hubertus Zimmermann - , University of Göttingen, Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (Author)

Abstract

Background: Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. Methods: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β 1 - and β 2 -adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.

Details

Original languageEnglish
Pages (from-to)1832-1847
Number of pages16
JournalCirculation
Volume135
Issue number19
Publication statusPublished - 9 May 2017
Peer-reviewedYes

External IDs

PubMed 28167635

Keywords

Sustainable Development Goals

Keywords

  • heart failure, models, cardiovascular, regeneration, stem cells, tissue engineering