Deep learning fuzzy immersion and invariance control for type-I diabetes
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
In this study, a novel approach is proposed for glucose regulation in type-I diabetes patients. Unlike most studies, the glucose–insulin metabolism is considered to be uncertain. A new approach on the basis of the Immersion and Invariance (I&I) theorem is presented to derive the adaptation rules for the unknown parameters. Also, a new deep learned type-II fuzzy logic system (T2FLS) is proposed to compensate the estimation errors and guarantee stability. The suggested T2FLS is tuned by the singular value decomposition (SVD) method and adaptive tuning rules that are extracted from stability investigation. To evaluate the performance, the modified Bergman model (BM) is applied. Besides the dynamic uncertainties, the meal effect on glucose level is also considered. The meal effect is defined as the effect of edibles. Similar to the patient activities, the edibles can also have a major impact on the glucose level. Furthermore, to assess the effect of patient informal activities and the effect of other illnesses, a high random perturbation is applied to glucose–insulin dynamics. The effectiveness of the suggested approach is demonstrated by comparing the simulation results with some other methods. Simulations show that the glucose level is well regulated by the suggested method after a short time. By examination on some patients with various diabetic condition, it is seen that the suggested approach is well effective, and the glucose level of patients lies in the desired range in more than 99% h.
Details
Original language | English |
---|---|
Article number | 105975 |
Pages (from-to) | 1 |
Number of pages | 14 |
Journal | Computers in Biology and Medicine |
Volume | 149 |
Publication status | Published - Oct 2022 |
Peer-reviewed | Yes |
External IDs
Scopus | 85137116929 |
---|---|
Mendeley | 32f413cf-dceb-3ff5-96be-46ecbdaf7125 |
WOS | 000863308600006 |
Keywords
Sustainable Development Goals
Keywords
- Compensator, Deep learning, Diabetes, Glucose level, Immersion and invariance, Insulin, Robust controller, Stability, Type-2 fuzzy system, Type-2 fuzzy systems