Deconstructing cellular senescence in bone and beyond
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Osteocytes are specialized bone cells that orchestrate skeletal remodeling. Senescent osteocytes are characterized by an activation of cyclin-dependent kinase inhibitor p16Ink4a and have been implicated in the pathogenesis of several bone loss disorders. In this issue of the JCI, Farr et al. have now shown that systemic removal of senescent cells (termed senolysis) prevented age-related bone loss at the spine and femur and mitigated bone marrow adiposity through a robust effect on osteoblasts and osteoclasts, whereas cell-specific senolysis in osteocytes alone was only partially effective. Surprisingly, transplantation of senescent fibroblasts into the peritoneum of young mice caused host osteocyte senescence associated with bone loss. This refined concept of osteocyte senescence and the effects of remote senolysis may help to develop improved senolytic strategies against multisystem aging in bone and beyond.
Details
Original language | English |
---|---|
Article number | e169069 |
Number of pages | 4 |
Journal | Journal of Clinical Investigation |
Volume | 133 |
Issue number | 8 |
Publication status | Published - 17 Apr 2023 |
Peer-reviewed | Yes |
External IDs
PubMed | 37066877 |
---|---|
unpaywall | 10.1172/jci169069 |
Mendeley | e6d79c5f-79c9-37c9-9454-ae0ff6f66721 |
WOS | 000982479400003 |
ORCID | /0000-0002-8691-8423/work/142236076 |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
Subject groups, research areas, subject areas according to Destatis
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- Mice, Animals, Cellular Senescence/physiology, Bone and Bones, Aging/pathology, Osteoblasts, Osteoclasts, Osteocytes, Bone Diseases, Metabolic