Data-based perfect-deficit approach to understanding climate extremes and forest carbon assimilation capacity
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Several lines of evidence suggest that the warming climate plays a vital role in driving certain types of extreme weather. The impact of warming and of extreme weather on forest carbon assimilation capacity is poorly known. Filling this knowledge gap is critical towards understanding the amount of carbon that forests can hold. Here, we used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on observational data measured by the eddy covariance method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon assimilation capacities of evergreen broadleaf forest (EBF) and deciduous broadleaf forest. The carbon assimilation capacities of Mediterranean forests were highly sensitive to climate extremes, while marine forest climates tended to be insensitive to climate extremes. Our estimates suggest an average global reduction of forest CPC due to unfavorable climate extremes of 6.3 Pg C (∼5.2% of global gross primary production) per growing season over 2001-2010, with EBFs contributing 52% of the total reduction.
Details
Original language | English |
---|---|
Article number | 065002 |
Journal | Environmental Research Letters |
Volume | 9 |
Issue number | 6 |
Publication status | Published - 1 Jun 2014 |
Peer-reviewed | Yes |
External IDs
Scopus | 84903625163 |
---|---|
ORCID | /0000-0003-2263-0073/work/164619475 |
Keywords
Sustainable Development Goals
Keywords
- carbon assimilation capacity, climate extremes, drought, perfect-deficit approach, forests