Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM2N@C80 (M = Sc, Lu, Y)

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Wei Yang - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Marco Rosenkranz - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Georgios Velkos - , Chair of Experimental Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Frank Ziegs - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Vasilii Dubrovin - , Chair of Experimental Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Sandra Schiemenz - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Lukas Spree - , Leibniz Institute for Solid State and Materials Research Dresden, Institute for Basic Science (Author)
  • Matheus Felipe de Souza Barbosa - , Chair of Experimental Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Charles Guillemard - , Autonomous University of Barcelona (Author)
  • Manuel Valvidares - , Autonomous University of Barcelona (Author)
  • Bernd Büchner - , Chair of Experimental Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Fupin Liu - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Stanislav M. Avdoshenko - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Alexey A. Popov - , Leibniz Institute for Solid State and Materials Research Dresden (Author)

Abstract

Nd-based nitride clusterfullerenes NdM2N@C80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm−1, while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.

Details

Original languageEnglish
Pages (from-to)2141-2157
Number of pages17
JournalChemical science
Volume15
Issue number6
Early online date21 Dec 2023
Publication statusPublished - 14 Feb 2024
Peer-reviewedYes

Keywords

ASJC Scopus subject areas

Library keywords