Convective dynamics of traveling autocatalytic fronts in a modulated gravity field
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
When traveling in thin solution layers, autocatalytic chemical fronts may be deformed and accelerated by convective currents that develop because of density and surface tension gradients related to concentration and thermal gradients across the front. On earth, both buoyancy and Marangoni related flows can act in solution layers open to the air while only buoyancy effects operate in covered liquid layers. The respective effects of density and surface tension induced convective motions are analysed here by studying experimentally the propagation of autocatalytic fronts in uncovered and covered liquid layers during parabolic flights in which the gravity field is modulated periodically. We find that the velocity and deformation of the front are increased during hyper-gravity phases and reduced in the micro-gravity phase. The experimental results compare well with numerical simulations of the evolution of the concentration of the autocatalytic product coupled to the flow field dynamics described by Navier-Stokes equations.
Details
Original language | English |
---|---|
Pages (from-to) | 26279-26287 |
Number of pages | 9 |
Journal | Physical Chemistry Chemical Physics |
Volume | 16 |
Issue number | 47 |
Publication status | Published - 13 Nov 2014 |
Peer-reviewed | Yes |