Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal model

Research output: Contribution to journalResearch articleContributedpeer-review


One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.


Original languageEnglish
Article number023301
Number of pages13
JournalPhysical Review E
Issue number2
Publication statusPublished - 1 Aug 2017

External IDs

Scopus 85028753373
ORCID /0000-0002-4217-0951/work/142237381



  • crystal defects, crystal structure, phase-field modeling