Control over self-assembled Janus clusters by the strength of magnetic field in H2O2

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Yara Alsaadawi - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Anna Eichler-Volf - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Michael Heigl - , Augsburg University (Author)
  • Peter Zahn - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Manfred Albrecht - , Augsburg University (Author)
  • Artur Erbe - , Helmholtz-Zentrum Dresden-Rossendorf (Author)

Abstract

Abstract: Colloidal Janus microparticles can be propelled by controlled chemical reactions on their surfaces. Such microswimmers have been used as model systems for the behavior on the microscale and as carriers for cargo to well-defined positions in hard-to-access areas. Here we demonstrate the propagation motion of clusters of magnetic Janus particles driven by the catalytic decomposition of H 2O 2 on their metallic caps. The magnetic moments of their caps lead to certain spatial arrangements of Janus particles, which can be influenced by external magnetic fields. We investigate how the arrangement of the particles and caps determines the driven motion of the particle clusters. In addition, we show the influence of confining walls on the cluster motion, which will be encountered in any real-life biological system. Graphic abstract: [Figure not available: see fulltext.].

Details

Original languageEnglish
Article number23
JournalEuropean Physical Journal E
Volume44
Issue number2
Publication statusPublished - Feb 2021
Peer-reviewedYes
Externally publishedYes

External IDs

PubMed 33683470