Congruence-based contextual plausibility modulates cortical activity during vibrotactile perception in virtual multisensory environments

Research output: Contribution to journalResearch articleContributedpeer-review


How congruence cues and congruence-based expectations may together shape perception in virtual reality (VR) still need to be unravelled. We linked the concept of plausibility used in VR research with congruence-based modulation by assessing brain responses while participants experienced vehicle riding experiences in VR scenarios. Perceptual plausibility was manipulated by sensory congruence, with multisensory stimulations confirming with common expectations of road scenes being plausible. We hypothesized that plausible scenarios would elicit greater cortical responses. The results showed that: (i) vibrotactile stimulations at expected intensities, given embedded audio-visual information, engaged greater cortical activities in frontal and sensorimotor regions; (ii) weaker plausible stimulations resulted in greater responses in the sensorimotor cortex than stronger but implausible stimulations; (iii) frontal activities under plausible scenarios negatively correlated with plausibility violation costs in the sensorimotor cortex. These results potentially indicate frontal regulation of sensory processing and extend previous evidence of contextual modulation to the tactile sense.


Original languageEnglish
Article number1360
JournalCommunications biology
Issue number1
Publication statusPublished - 12 Dec 2022

External IDs

Scopus 85143993298
PubMed 36509971
Mendeley 5fcad4a7-16cf-352d-ad4e-eed0b6ee91b4
ORCID /0000-0002-3496-441X/work/142232481
ORCID /0000-0002-0803-8818/work/142257133


Research priority areas of TU Dresden

DFG Classification of Subject Areas according to Review Boards


  • Humans, Touch Perception/physiology, Sensorimotor Cortex/physiology, Touch, Cues

Library keywords