Computing Quantiles in Markov Reward Models
Research output: Contribution to book/Conference proceedings/Anthology/Report › Conference contribution › Contributed › peer-review
Contributors
Abstract
Probabilistic model checking mainly concentrates on techniques for reasoning about the probabilities of certain path properties or expected values of certain random variables. For the quantitative system analysis, however, there is also another type of interesting performance measure, namely quantiles. A typical quantile query takes as input a lower probability bound p ∈ ]0,1] and a reachability property. The task is then to compute the minimal reward bound r such that with probability at least p the target set will be reached before the accumulated reward exceeds r. Quantiles are well-known from mathematical statistics, but to the best of our knowledge they have not been addressed by the model checking community so far.
In this paper, we study the complexity of quantile queries for until properties in discrete-time finite-state Markov decision processes with nonnegative rewards on states. We show that qualitative quantile queries can be evaluated in polynomial time and present an exponential algorithm for the evaluation of quantitative quantile queries. For the special case of Markov chains, we show that quantitative quantile queries can be evaluated in pseudo-polynomial time.
In this paper, we study the complexity of quantile queries for until properties in discrete-time finite-state Markov decision processes with nonnegative rewards on states. We show that qualitative quantile queries can be evaluated in polynomial time and present an exponential algorithm for the evaluation of quantitative quantile queries. For the special case of Markov chains, we show that quantitative quantile queries can be evaluated in pseudo-polynomial time.
Details
Original language | English |
---|---|
Title of host publication | Foundations of Software Science and Computation Structures |
Editors | Frank Pfenning |
Publisher | Springer, Berlin [u. a.] |
Pages | 353-368 |
Number of pages | 16 |
ISBN (print) | 978-3-642-37074-8 |
Publication status | Published - 2013 |
Peer-reviewed | Yes |
Publication series
Series | Lecture Notes in Computer Science, Volume 7794 |
---|---|
ISSN | 0302-9743 |
Conference
Title | 15th International Conference on Foundations of Software Science and Computational Structures |
---|---|
Subtitle | Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013 |
Abbreviated title | FoSSaCS 2013 |
Conference number | |
Duration | 16 - 24 March 2013 |
Degree of recognition | International event |
Location | |
City | Rom |
Country | Italy |
External IDs
Scopus | 84874426860 |
---|---|
ORCID | /0000-0002-5321-9343/work/142236750 |
Keywords
Keywords
- quantiles, Markov Reward Models