Comparative biomechanical analysis demonstrates functional convergence between slender-snouted crocodilians and phytosaurs

Research output: Other contributionOtherContributed

Contributors

Abstract

Morphological similarities between the extinct Triassic archosauriform clade Phytosauria and extant crocodilians have formed the basis of long-proposed hypotheses of evolutionary convergence. These hypotheses have informed the reconstructions of phytosaur ecology and biology, including feeding preferences, body mass, soft tissue systems, mating behaviours, and environmental preferences. However, phytosaurs possess numerous cranial apomorphies that distinguish them from modern crocodilians and potentially limit ecomorphological comparisons. Here, we present the first computational mechanical comparison of phytosaur cranial strength to several extant crocodilian taxa using two biomechanical approaches: beam theory and finite element analysis. We demonstrate mechanical convergence between the slender-snouted phytosaur Ebrachosuchus neukami and modern slender-snouted crocodilians. We provide evidence that the phytosaurian premaxillary palate is functionally equivalent to the crocodilian secondary palate. The premaxillary palate is associated with greater resistance to biting induced stress, lower strain energy, higher resistance to bending and torsion, as well as increased performance under tension. In all tests, Ebrachosuchus performed worse than all tested crocodilians, showing higher stress under equivalent loading conditions. These findings have implications for the proposed feeding ecology of slender-snouted phytosaurs and corroborate previous broad assessments of phytosaur ecology based on morphological comparisons to crocodilians; however, we urge caution in overextending those assessments given the current paucity of comparative functional data.

Details

Original languageEnglish
Publication statusPublished - 10 Jan 2019
Peer-reviewedNo
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.OtherContribution

Keywords