Classical Planning with Avoid Conditions
Research output: Contribution to book/conference proceedings/anthology/report › Conference contribution › Contributed › peer-review
Contributors
Abstract
It is often natural in planning to specify conditions that should be avoided, characterizing dangerous or highly undesirable behavior. PDDL3 supports this with temporal-logic state trajectory constraints. Here we focus on the simpler case where the constraint is a non-temporal formula φ - the avoid condition - that must be false throughout the plan. We design techniques tackling such avoid conditions effectively. We show how to learn from search experience which states necessarily lead into φ, and we show how to tailor abstractions to recognize that avoiding φ will not be possible starting from a given state. We run a large-scale experiment, comparing our techniques against compilation methods and against simple state pruning using φ. The results show that our techniques are often superior.
Details
Original language | English |
---|---|
Title of host publication | Proc. of the 36th AAAI Conference on Artificial Intelligence (AAAI) |
Pages | 9944-9952 |
Number of pages | 9 |
ISBN (electronic) | 1577358767, 9781577358763 |
Publication status | Published - 2022 |
Peer-reviewed | Yes |
External IDs
Scopus | 85147659750 |
---|---|
ORCID | /0000-0001-9936-0943/work/142238128 |