Charge Trapping and Defect Dynamics as Origin of Memory Effects in Metal Halide Perovskite Memlumors

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Alexandr Marunchenko - , Lund University, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Author)
  • Jitendra Kumar - , Lund University (Author)
  • Alexander Kiligaridis - , Lund University (Author)
  • Shraddha M. Rao - , Lund University (Author)
  • Dmitry Tatarinov - , St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Author)
  • Ivan Matchenya - , St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Author)
  • Elizaveta Sapozhnikova - , St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Author)
  • Ran Ji - , Chair of Emerging Electronic Technologies (gB/IFW and cfaed), Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Oscar Telschow - , Chair of Emerging Electronic Technologies (gB/IFW and cfaed), Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Julius Brunner - , Chair of Emerging Electronic Technologies (gB/IFW and cfaed), Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Alexei Yulin - , St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Author)
  • Anatoly Pushkarev - , St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Author)
  • Yana Vaynzof - , Center for Advancing Electronics Dresden (cfaed), Chair of Emerging Electronic Technologies (gB/IFW and cfaed), Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Ivan G. Scheblykin - , Lund University (Author)

Abstract

Large language models for artificial intelligence applications require energy-efficient computing. Neuromorphic photonics has the potential to reach significantly lower energy consumption in comparison with classical electronics. A recently proposed memlumor device uses photoluminescence output that carries information about its excitation history via the excited state dynamics of the material. Solution-processed metal halide perovskites can be used as efficient memlumors. We show that trapping of photogenerated charge carriers modulated by photoinduced dynamics of the trapping states themselves explains the memory response of perovskite memlumors on time scales from nanoseconds to minutes. The memlumor concept shifts the paradigm of the detrimental role of charge traps and their dynamics in metal halide perovskite semiconductors by enabling new applications based on these trap states. The appropriate control of defect dynamics in perovskites allows these materials to enter the field of energy-efficient photonic neuromorphic computing, which we illustrate by proposing several possible realizations of such systems.

Details

Original languageEnglish
Pages (from-to)6256-6265
Number of pages10
JournalJournal of Physical Chemistry Letters
Volume15
Issue number24
Early online date6 Jun 2024
Publication statusPublished - 20 Jun 2024
Peer-reviewedYes

External IDs

PubMed 38843474

Keywords

Sustainable Development Goals

Library keywords