Brain response to intranasal trimethylamine stimulation: A preliminary human fMRI study

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

The trace amine-associated receptors (TAARs) are a second class of olfactory receptors in humans. They are activated by volatile amines, including pheromone-like odors. However, in humans the neural processing of TAAR-associated signals is not known. Using functional magnetic resonance imaging, the current study investigated brain activation following intra-nasal stimulation with trimethylamine (TMA), an agonist of human TAAR5, and three "canonical" odors with varied valence (an unpleasant odor [n-butanol], a neutral to unpleasant odor [civet musk], and a pleasant odor [phenyl ethyl alcohol]) in 12 healthy young participants. Our hypothesis driven analysis showed that TMA induced a trend for stronger left amygdala activation as compared to the other odors (Family-Wise Error corrected p = 0.08). Whole-brain exploratory analyses revealed superior activation of the cerebellum and caudate to TMA compared to canonical odors, and stronger activation of the anterior cingulate and somatosensory regions (postcentral gyrus and mid cingulate) in response to canonical odors compared to TMA. The current results provide initial evidence on differential central processes of a TAAR mediated stimulus compared to odors targeting canonical olfactory receptors. Future research are needed to elucidate the physiological and psychological relevance of TAARs in humans.

Details

Original languageEnglish
Pages (from-to)135166
JournalNeuroscience letters
Volume735
Publication statusPublished - 14 Sept 2020
Peer-reviewedYes

External IDs

Scopus 85087027967
ORCID /0000-0001-9713-0183/work/146645632

Keywords

Sustainable Development Goals

Keywords

  • Administration, Inhalation, Administration, Intranasal, Adult, Brain/drug effects, Female, Humans, Magnetic Resonance Imaging, Methylamines/pharmacology, Odorants, Olfactory Perception/physiology, Receptors, G-Protein-Coupled/metabolism, Young Adult