Bootstrap reservoir concepts for electro-hydraulic compact cylinder drives

Research output: Contribution to conferencesPaperContributedpeer-review

Contributors

Abstract

This paper presents a conceptual study aiming to improve the compactness of electro-hydraulic compact drives (ECD ). In most current ECD architectures, gas accumulators are used as volume compensators for the flow imbalance emerging whenever asymmetric single rod cylinders are used. To stay within a required reservoir pressure range typically from two to four bar, a large gas volume is required, compromising system compactness. Combining conventional ECD architectures with a bootstrap reservoir offers a greater degree of freedom in system design, which enables downsizing or avoidance of the gas volume. Another potential benefit by including a bootstrap reservoir is the possibility of elevating the backpressure of the ECD thus enhancing drive stiffness, expanding the application range and market acceptance. Based on an open analysis of the solution space occurring when introducing a bootstrap reservoir, three system architectures are selected for a conceptual study. The results show that the downsizing potential is strongly dependent on the maximum friction force and the area ratio of the bootstrap reservoir pistons, while a linear analysis reveals that for some system architectures the bootstrap reservoir may severely influence the system dynamics. Simulation results confirm the functionality of the proposed system architectures, and show that a potential for downsizing/avoiding the gas volume, as well as increasing the ECD stiffness is present.

Details

Original languageEnglish
Pages201
Number of pages215
Publication statusPublished - 2020
Peer-reviewedYes

Colloquium

Title12th International Fluid Power Conference
SubtitleFluid Power – Future Technology!
Abbreviated title12th IFK
Conference number12
Duration12 - 14 October 2020
Locationonline
CityDresden
CountryGermany

Keywords

Keywords

  • 12. IFK, Bootstrap-Reservoir, Elektrohydraulischer, kompakter Zylinderantrieb, in sich geschlossener Zylinder