Artificial intelligence for detection of microsatellite instability in colorectal cancer-a multicentric analysis of a pre-screening tool for clinical application

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • A Echle - , University Hospital Aachen (Author)
  • N Ghaffari Laleh - , Else Kröner Fresenius Center for Digital Health, University Hospital Aachen (Author)
  • P Quirke - , University of Leeds (Author)
  • H I Grabsch - , University of Leeds (Author)
  • H S Muti - , Centre for Surgery - Intensiv Care Unit, Else Kröner Fresenius Center for Digital Health, University Hospital Aachen (Author)
  • O L Saldanha - , University Hospital Aachen (Author)
  • S F Brockmoeller - , University of Leeds (Author)
  • P A van den Brandt - , Maastricht University (Author)
  • G G A Hutchins - , University of Leeds (Author)
  • S D Richman - , University of Leeds (Author)
  • K Horisberger - , University Hospital Zurich (Author)
  • C Galata - , Heidelberg University  (Author)
  • M P Ebert - , Universitätsmedizin Mannheim, University Hospital Heidelberg, Heidelberg University  (Author)
  • M Eckardt - , Universitätsmedizin Mannheim, University Hospital Heidelberg, Heidelberg University  (Author)
  • M Boutros - , German Cancer Research Center (DKFZ) (Author)
  • D Horst - , Charité – Universitätsmedizin Berlin (Author)
  • C Reissfelder - , Heidelberg University  (Author)
  • E Alwers - , German Cancer Research Center (DKFZ) (Author)
  • T J Brinker - , German Cancer Research Center (DKFZ) (Author)
  • R Langer - , Inselspital University Hospital Bern, University of Bern (Author)
  • J C A Jenniskens - , Maastricht University (Author)
  • K Offermans - , Maastricht University (Author)
  • W Mueller - (Author)
  • R Gray - , University of Oxford (Author)
  • S B Gruber - , University of Antwerp (Author)
  • J K Greenson - , City of Hope Comprehensive Cancer Center - Duarte (Author)
  • G Rennert - , Technion-Israel Institute of Technology (Author)
  • J D Bonner - , University of Antwerp (Author)
  • D Schmolze - , City of Hope Comprehensive Cancer Center - Duarte (Author)
  • J Chang-Claude - , University Hospital Hamburg Eppendorf (Author)
  • H Brenner - , German Cancer Research Center (DKFZ) (Author)
  • C Trautwein - , University Hospital Aachen (Author)
  • P Boor - , University Hospital Aachen (Author)
  • D Jaeger - , National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg (Author)
  • N T Gaisa - , University Hospital Aachen (Author)
  • M Hoffmeister - , German Cancer Research Center (DKFZ) (Author)
  • N P West - , University of Leeds (Author)
  • J N Kather - , Else Kröner Fresenius Center for Digital Health, University Hospital Aachen, Leeds Teaching Hospitals NHS Trust, University of Leeds (Author)

Abstract

BACKGROUND: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI) methods can detect MSI/dMMR directly in routine pathology slides, but the test performance has not been systematically investigated with predefined test thresholds.

METHOD: We trained and validated AI-based MSI/dMMR detectors and evaluated predefined performance metrics using nine patient cohorts of 8343 patients across different countries and ethnicities.

RESULTS: Classifiers achieved clinical-grade performance, yielding an area under the receiver operating curve (AUROC) of up to 0.96 without using any manual annotations. Subsequently, we show that the AI system can be applied as a rule-out test: by using cohort-specific thresholds, on average 52.73% of tumors in each surgical cohort [total number of MSI/dMMR = 1020, microsatellite stable (MSS)/ proficient mismatch repair (pMMR) = 7323 patients] could be identified as MSS/pMMR with a fixed sensitivity at 95%. In an additional cohort of N = 1530 (MSI/dMMR = 211, MSS/pMMR = 1319) endoscopy biopsy samples, the system achieved an AUROC of 0.89, and the cohort-specific threshold ruled out 44.12% of tumors with a fixed sensitivity at 95%. As a more robust alternative to cohort-specific thresholds, we showed that with a fixed threshold of 0.25 for all the cohorts, we can rule-out 25.51% in surgical specimens and 6.10% in biopsies.

INTERPRETATION: When applied in a clinical setting, this means that the AI system can rule out MSI/dMMR in a quarter (with global thresholds) or half of all CRC patients (with local fine-tuning), thereby reducing cost and turnaround time for molecular profiling.

Details

Original languageEnglish
Article number100400
JournalESMO open
Volume7
Issue number2
Publication statusPublished - Apr 2022
Peer-reviewedYes

External IDs

PubMedCentral PMC9058894
Scopus 85125539306

Keywords

Sustainable Development Goals

Keywords

  • Artificial Intelligence, Colorectal Neoplasms/diagnosis, DNA Mismatch Repair/genetics, Early Detection of Cancer, Humans, Microsatellite Instability

Library keywords