Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics

Research output: Contribution to journalReview articleContributedpeer-review

Contributors

  • Yanhao Wang - , Shandong University (Author)
  • Jinbo Pang - , University of Jinan (Author)
  • Qilin Cheng - , University of Jinan (Author)
  • Lin Han - , Shandong University (Author)
  • Yufen Li - , University of Jinan (Author)
  • Xue Meng - , Shandong University (Author)
  • Bergoi Ibarlucea - , Center for Advancing Electronics Dresden (cfaed), Chair of Materials Science and Nanotechnology, Max Bergmann Center of Biomaterials Dresden, TUD Dresden University of Technology (Author)
  • Hongbin Zhao - , General Research Institute for Non-ferrous Metals China (Author)
  • Feng Yang - , Southern University of Science and Technology (Author)
  • Haiyun Liu - , University of Jinan (Author)
  • Hong Liu - , University of Jinan, Shandong University (Author)
  • Weijia Zhou - , University of Jinan (Author)
  • Xiao Wang - , Shenzhen Institute of Advanced Technology (Author)
  • Mark H. Rummeli - , Chair of Experimental Solid State Physics, College of Energy Soochow Institute for Energy and Materials Innovations, Soochow University, Polish Academy of Sciences, Leibniz Institute for Solid State and Materials Research Dresden, VŠB – Technical University of Ostrava (Author)
  • Yu Zhang - , Shandong University (Author)
  • Gianaurelio Cuniberti - , Center for Advancing Electronics Dresden (cfaed), Chair of Materials Science and Nanotechnology, Max Bergmann Center of Biomaterials Dresden, TUD Dresden University of Technology (Author)

Abstract

The rapid development of two-dimensional (2D) transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties. In particular, palladium diselenide (PdSe2) with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research interest. Consequently, tremendous research progress has been achieved regarding the physics, chemistry, and electronics of PdSe2. Accordingly, in this review, we recapitulate and summarize the most recent research on PdSe2, including its structure, properties, synthesis, and applications. First, a mechanical exfoliation method to obtain PdSe2 nanosheets is introduced, and large-area synthesis strategies are explained with respect to chemical vapor deposition and metal selenization. Next, the electronic and optoelectronic properties of PdSe2 and related heterostructures, such as field-effect transistors, photodetectors, sensors, and thermoelectric devices, are discussed. Subsequently, the integration of systems into infrared image sensors on the basis of PdSe2 van der Waals heterostructures is explored. Finally, future opportunities are highlighted to serve as a general guide for physicists, chemists, materials scientists, and engineers. Therefore, this comprehensive review may shed light on the research conducted by the 2D material community.[Figure not available: see fulltext.]

Details

Original languageEnglish
Article number143
JournalNano-Micro Letters
Volume13
Issue number1
Publication statusPublished - Dec 2021
Peer-reviewedYes

External IDs

ORCID /0000-0002-9899-1409/work/142249215

Keywords

Keywords

  • Field-effect transistors, nTMDC, Palladium diselenide, Photodetectors, Sensors, Synthesis