Antifouling potential of subtilisin a immobilized onto maleic anhydride copolymer thin films

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Mariana Tasso - , Leibniz Institute of Polymer Research Dresden (Author)
  • Michala E. Pettitt - , University of Birmingham (Author)
  • Ana L. Cordeiro - , Leibniz Institute of Polymer Research Dresden (Author)
  • Maureen E. Callow - , University of Birmingham (Author)
  • James A. Callow - , University of Birmingham (Author)
  • Carsten Werner - , Chair of Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, University of Toronto (Author)

Abstract

The proteinaceous nature of the adhesives used by most fouling organisms to attach to surfaces suggests that coatings incorporating proteolytic enzymes may provide a technology for the control of biofouling. In the present article, the antifouling (AF) and fouling release potential of model coatings incorporating the surface-immobilized protease, Subtilisin A, have been investigated. The enzyme was covalently attached to maleic anhydride copolymer thin films; the characteristics of the bioactive coatings obtained were adjusted through variation of the type of copolymer and the concentration of the enzyme solution used for immobilization. The bioactive coatings were tested for their effect on the settlement and adhesion strength of two major fouling species: the green alga Ulva linza and the diatom Navicula perminuta. The results show that the immobilized enzyme effectively reduced the settlement and adhesion strength of zoospores of Ulva and the adhesion strength of Navicula cells. The AF efficacy of the bioactive coatings increased with increasing enzyme surface concentration and activity, and was found to be superior to the equivalent amount of enzyme in solution. The results provide a rigorous analysis of one approach to the use of immobilized proteases to reduce the adhesion of marine fouling organisms and are of interest to those investigating enzyme-containing coating technologies for practical biofouling control.

Details

Original languageEnglish
Pages (from-to)505-516
Number of pages12
JournalBiofouling
Volume25
Issue number6
Publication statusPublished - Aug 2009
Peer-reviewedYes

External IDs

PubMed 19387876
ORCID /0000-0003-0189-3448/work/162347714

Keywords

Sustainable Development Goals

Keywords

  • Antifouling, Immobilized enzymes, Maleic anhydride copolymers, Navicula, Subtilisin Carlsberg, Ulva