An injectable hydrogel-formulated inhibitor of prolyl-4-hydroxylase promotes T regulatory cell recruitment and enhances alveolar bone regeneration during resolution of experimental periodontitis

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Kosuke Nagai - , Institute of Clinical Chemistry and Laboratory Medicine, University of Pennsylvania (Author)
  • Hidetaka Ideguchi - , University of Pennsylvania, Okayama University (Author)
  • Tetsuhiro Kajikawa - , University of Pennsylvania (Author)
  • Xiaofei Li - , University of Pennsylvania (Author)
  • Triantafyllos Chavakis - , Institute of Clinical Chemistry and Laboratory Medicine (Author)
  • Jing Cheng - , University of California at Berkeley, Alcon (Author)
  • Phillip B. Messersmith - , University of California at Berkeley (Author)
  • Ellen Heber-Katz - , Main Line Health (Author)
  • George Hajishengallis - , University of Pennsylvania (Author)

Abstract

The hypoxia-inducible factor 1α (HIF-1α) is critically involved in tissue regeneration. Hence, the pharmacological prevention of HIF-1α degradation by prolyl hydroxylase (PHD) under normoxic conditions is emerging as a promising option in regenerative medicine. Using a mouse model of ligature-induced periodontitis and resolution, we tested the ability of an injectable hydrogel-formulated PHD inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA/hydrogel), to promote regeneration of alveolar bone lost owing to experimental periodontitis. Mice injected subcutaneously with 1,4-DPCA/hydrogel at the onset of periodontitis resolution displayed significantly increased gingival HIF-1α protein levels and bone regeneration, as compared to mice treated with vehicle control. The 1,4-DPCA/hydrogel-induced increase in bone regeneration was associated with elevated expression of osteogenic genes, decreased expression of pro-inflammatory cytokine genes, and increased abundance of FOXP3+ T regulatory (Treg) cells in the periodontal tissue. The enhancing effect of 1,4-DPCA/hydrogel on Treg cell accumulation and bone regeneration was reversed by AMD3100, an antagonist of the chemokine receptor CXCR4 that mediates Treg cell recruitment. In conclusion, the administration of 1,4-DPCA/hydrogel at the onset of periodontitis resolution promotes CXCR4-dependent accumulation of Treg cells and alveolar bone regeneration, suggesting a novel approach for regaining bone lost due to periodontitis.

Details

Original languageEnglish
Pages (from-to)13726-13740
Number of pages15
JournalFASEB Journal
Volume34
Issue number10
Publication statusPublished - 1 Oct 2020
Peer-reviewedYes

External IDs

PubMed 32812255

Keywords

Keywords

  • 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid, AMD3100, hypoxia-inducible factor 1α, osteogenesis, T regulatory cells

Library keywords