An Alkyne-Bridged Covalent Organic Framework Featuring Interactive Pockets for Bromine Capture
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
The high degree of corrosivity and reactivity of bromine, which is released from various sources, poses a serious threat to the environment. Moreover, its coexistence with iodine forming an equilibrium compound, iodine monobromide (IBr) necessitates the selective capture of bromine from halogen mixtures. The electrophilicity of halogens to π-electron rich structures enabled us to strategically design a covalent organic framework for halogen capture, featuring a defined pore environment with localized sorption sites. The higher capture capacity of bromine (4.6 g g−1) over iodine by ~41 % shows its potential in selective capture. Spectroscopic results uncovering the preferential interaction sites are supported by theoretical investigations. The alkyne bridge is a core functionality promoting the selectivity in capture by synergistic physisorption, rationalized by the higher orbital overlap of bromine due to its smaller atomic size as well as reversible chemical interactions. The slip stacking in the structure has further promoted this phenomenon by creating clusters of molecular interaction sites with bromine intercalated between the layers. The inclusion of unsaturated moieties, i.e. triple bonds and the complementary pore geometry offer a promising design strategy for the construction of porous materials for halogen capture.
Details
Original language | English |
---|---|
Article number | e202403658 |
Journal | Angewandte Chemie - International Edition |
Volume | 63 |
Issue number | 31 |
Publication status | Published - 29 Jul 2024 |
Peer-reviewed | Yes |
External IDs
PubMed | 38738600 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- bromine capture, covalent organic frameworks, physisorption, selectivity