An 850-nm common-cathode VCSEL driver with tunable energy efficiency for 45 Gbit/s data transmission without equalization

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Abstract

A high-speed laser diode driver (LDD) for vertical-cavity surface-emitting laser (VCSEL) with direct non-return-to-zero (NRZ) modulation and adjustable energy efficiency is presented. The LDD is designed in a 0.13 μm SiGe BiCMOS technology and assembled with a commercial 850 nm VCSEL with a bandwidth of 20GHz in common cathode (CC) configuration. Optimized driver operation is studied for constant extinction ratio (ER) and highest energy efficiency at different speeds. The highest error-free optical data rate (DR) with a bit error rate (BER) of less than 10-13 was measured to 45Gbit/s. Since the driver does not incorporate any signal equalization or pre-emphasis, only 1.8 pJ/bit are required at this DR. To the best of the authors' knowledge, this is the highest reported DR for a direct VCSEL modulation without any kind of equalization at the transmitter as well as the receiver side. The best energy efficiency of 1.17 pJ/bit is achieved at 30Gbit/s by adopting the modulation levels of the LDD. By adaptively tuning the VCSEL modulation, the power consumption of the LDD can be reduced by 80% and the energy efficiency can be improved by 500%. Furthermore, no area consuming peaking inductors are used for bandwidth enhancement leading to a compact design with an active area of only 0.15 × 0.12 mm2 which makes the design well suited for low-cost multi-channel optical interconnects.

Details

Original languageEnglish
Title of host publicationAsia Pacific Microwave Conference (APMC)
EditorsIdnin Pasya
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1103-1106
Number of pages4
ISBN (electronic)978-1-5386-0640-7
ISBN (print)978-1-5386-0641-4
Publication statusPublished - 2017
Peer-reviewedYes

Publication series

SeriesAsia-Pacific Microwave Conference (APMC)

Conference

Title2017 IEEE Asia Pacific Microwave Conference, APMC 2017
Duration13 - 16 November 2017
CityKuala Lumpur
CountryMalaysia

External IDs

ORCID /0000-0002-1851-6828/work/142256642

Keywords

Research priority areas of TU Dresden

Sustainable Development Goals

ASJC Scopus subject areas

Keywords

  • BiCMOS, energy efficiency, high-speed modulation, laser driver, LDD, optical interconnect, opto-electronic integrated circuit, SiGe, VCSEL driver