Amino acid modified hyperbranched poly(ethylene imine) with disaccharide decoration as anionic core-shell architecture: Influence of the pH and molecular architecture on solution behaviour

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Christin Striegler - , Chair of Organic Chemistry of Polymers, Leibniz Institute of Polymer Research Dresden (Author)
  • Markus Franke - , Chair of Microsystems, Leibniz Institute of Polymer Research Dresden (Author)
  • Martin Mueller - , Leibniz Institute of Polymer Research Dresden (Author)
  • Susanne Boye - , Leibniz Institute of Polymer Research Dresden (Author)
  • Ulrich Oertel - , Leibniz Institute of Polymer Research Dresden (Author)
  • Andreas Janke - , Leibniz Institute of Polymer Research Dresden (Author)
  • Leonard Schellkopf - , Leibniz Institute of Polymer Research Dresden (Author)
  • Brigitte Voit - , Chair of Organic Chemistry of Polymers, Leibniz Institute of Polymer Research Dresden (Author)
  • Dietmar Appelhans - , Leibniz Institute of Polymer Research Dresden (Author)

Abstract

Dendritic polymers represent a class of materials for prospective drug delivery application. For that purpose we present the synthesis and characterization of hydrophilic, anionic core-shell architectures based on poly(ethylene imine) (PEI) as core molecule and polyamino acid chains (composed of glutamic acid or aspartic acid) as shell component. NCA polymerization is used for coupling polyamino acid chains to PEI scaffold. Modifying these structures with sugar molecules result in the formation of new core-shell architectures combining a mixture of binary and double shell. For their potential biomedical applications the solution properties of these anionic core-shell architectures at various pH values (3-9) were studied by different analytical tools (zeta potential, streaming potential pH titration, DLS, AFM, in-situ AFM, TEM and cryo-TEM). Especially, the sugar-decorated coreeshell architectures mainly provide isolated macromolecules over a broad pH range. Furthermore, the anionic coreeshell architectures are suited to interact with cationic molecules. (C) 2015 Elsevier Ltd. All rights reserved.

Details

Original languageEnglish
Pages (from-to)188-204
Number of pages17
JournalPolymer
Volume80
Publication statusPublished - 2 Dec 2015
Peer-reviewedYes

External IDs

Scopus 84946551194
ORCID /0000-0002-4531-691X/work/148607971

Keywords

Keywords

  • Anionic particles, Core-shell architecture, Dendritic polymers, Solution properties, Sugar decoration