Aldehyde Dehydrogenase Is Regulated by β-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Radiotherapy is a curative treatment option in prostate cancer. Nevertheless, patients with high-risk prostate cancer are prone to relapse. Identification of the predictive biomarkers and molecular mechanisms of radioresistance bears promise to improve cancer therapies. In this study, we show that aldehyde dehydrogenase (ALDH) activity is indicative of radioresistant prostate progenitor cells with an enhanced DNA repair capacity and activation of epithelial-mesenchymal transition (EMT). Gene expression profiling of prostate cancer cells, their radioresistant derivatives, ALDH(+) and ALDH(-) cell populations revealed the mechanisms, which link tumor progenitors to radioresistance, including activation of the WNT/β-catenin signaling pathway. We found that expression of the ALDH1A1 gene is regulated by the WNT signaling pathway and co-occurs with expression of β-catenin in prostate tumor specimens. Inhibition of the WNT pathway led to a decrease in ALDH(+) tumor progenitor population and to radiosensitization of cancer cells. Taken together, our results indicate that ALDH(+) cells contribute to tumor radioresistance and their molecular targeting may enhance the effectiveness of radiotherapy.

Details

Original languageEnglish
Pages (from-to)1482-1494
Number of pages13
JournalCancer Research
Volume75
Issue number7
Publication statusPublished - 1 Apr 2015
Peer-reviewedYes

External IDs

Scopus 84930019376
researchoutputwizard legacy.publication#67809
researchoutputwizard legacy.publication#67948
PubMed 25670168
ORCID /0000-0003-3717-3637/work/141545154
ORCID /0000-0002-5247-908X/work/142241920

Keywords

Sustainable Development Goals

Keywords

  • Aldehyde Dehydrogenase/genetics, Aldehyde Dehydrogenase 1 Family, Animals, Cell Line, Tumor, Gene Expression Regulation, Neoplastic, Humans, Male, Mice, Nude, Neoplasm Transplantation, Neoplastic Stem Cells/enzymology, Prostatic Neoplasms/enzymology, Radiation Tolerance, Retinal Dehydrogenase, Transcriptome, Wnt Signaling Pathway, beta Catenin/physiology