Age and provenance of detrital zircons from the Oligocene formations of the Marseille–Aubagne basins (SE France): consequences on the geodynamic and palaeogeographic evolution of the northern Gondwana margin
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Eight samples from Oligocene sedimentary rocks of the Marseille–Aubagne basins have been analysed for their detrital zircon age spectra. These age spectra provide information about the regional evolution, from Oligocene to Archaean times. The Carboniferous Variscan and the Late Cretaceous to Eocene Pyreneo-Provençal belts represent the latest main tectonic, magmatic, and volcanic events that formed the major zircon age populations found in studied sediments. The obtained detrital zircon age record of the Marseille–Aubagne basins comprises eleven detrital zircon age clusters. They reflect the long and complex geologic history of the sediments source areas and can be ascribed to the opening of the western Mediterranean, the Variscan, Cadomian and Pan-African belts, to an unknown Mesoproterozoic event, to the Eburnean orogeny of West Africa and to the different tectono-metamorphic events that took place in Archaean times. In general, the Palaeo- and Mesozoic events are ascribed to the dispersal of Western and Eastern Gondwana and the Pangaean supercontinent cycle. Thus, the successive recycling of zircon grains from older and the incorporation of them to younger belts lead to new geodynamical models for the northern Gondwana margin evolution. Significant amounts of Mesoproterozoic detrital zircon are at odds with previous hypotheses and re-open the question of the provenance of these zircon age populations. Therefore, this tiny tertiary basin is a natural archive which records the main geological events in SE France and its vicinity.
Details
Original language | English |
---|---|
Pages (from-to) | 187-212 |
Number of pages | 26 |
Journal | International journal of earth sciences |
Volume | 108 |
Issue number | 1 |
Publication status | Published - 8 Feb 2019 |
Peer-reviewed | Yes |
Externally published | Yes |
Keywords
ASJC Scopus subject areas
Keywords
- Geodynamic, Mediterranean, Oligocene, Palaeogeography, Provence, U–Th–Pb zircon dating, Variscan