Adaptation of a Real-Time Deep Learning Approach with an Analog Fault Detection Technique for Reliability Forecasting of Capacitor Banks Used in Mobile Vehicles
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
The DC-Link capacitor is defined as the essential electronics element which sources or sinks the respective currents. The reliability of DC-link capacitor-banks (CBs) encounters many challenges due to their usage in electric vehicles. Heavy shocks may damage the internal capacitors without shutting down the CB. The fundamental development obstacles of CBs are: lack of considering capacitor degradation in reliability assessment, the impact of unforeseen sudden internal capacitor faults in forecasting CB lifetime, and the faults consequence on CB degradation. The sudden faults change the CB capacitance, which leads to reliability change. To more accurately estimate the reliability, the type of the fault needs to be detected for predicting the correct post-fault capacitance. To address these practical problems, a new CB model and reliability assessment formula covering all fault types are first presented, then, a new analog fault-detection method is presented, and a combination of online-learning long short-term memory (LSTM) and fault-detection method is subsequently performed, which adapt the sudden internal CB faults with the LSTM to correctly predict the CB degradation. To confirm the correct LSTM operation, four capacitors degradation is practically recorded for 2000-hours, and the off-line faultless degradation values predicted by the LSTM are compared with the actual data. The experimental findings validate the applicability of the proposed method. The codes and data are provided.
Details
Original language | English |
---|---|
Pages (from-to) | 132271-132287 |
Number of pages | 17 |
Journal | IEEE access |
Volume | 10 |
Publication status | Published - 2022 |
Peer-reviewed | Yes |
Keywords
ASJC Scopus subject areas
Keywords
- artificial intelligence (AI), Capacitor-bank, deep learning, electronics, machine learning, power system reliability