A state-of-the-art empirical round robin validation of heat, air and moisture (HAM) models

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Xinyuan Dang - (Author)
  • Ana Sofia Guimarães - (Author)
  • Andreas Sarkany - (Author)
  • Anssi Laukkarinen - (Author)
  • Bingyu Xu - (Author)
  • Bruno Vanderschelden - (Author)
  • Carsten Rode - (Author)
  • Changchang Xia - (Author)
  • Chi Feng - (Author)
  • Chris Whitman - (Author)
  • Daan Deckers - (Author)
  • Hanyu Yang - (Author)
  • Heiko Fechner - , Chair of Building Physics (Author)
  • Himanshu sharma - (Author)
  • Hua Ge - (Author)
  • Huarong Xie - (Author)
  • Huibo Zhang - (Author)
  • Isabeau Vandemeulebroucke - (Author)
  • Jakub Mazura - (Author)
  • Jingchao Xie - (Author)
  • Jiri Madera - (Author)
  • John Grunewald - , Chair of Building Physics (Author)
  • Juha Vinha - (Author)
  • Kaat Janssens - (Author)
  • Kazuma Fukui - (Author)
  • Kostas Mourkos - (Author)
  • Lin Wang - (Author)
  • Marjorie Bart - (Author)
  • Martin Morelli - (Author)
  • Martin Tenpierik - (Author)
  • Masaru Abuku - (Author)
  • Maurice Defo - (Author)
  • Michele Bianchi Janetti - (Author)
  • Paul Klõšeiko - (Author)
  • Pauli Sekki - (Author)
  • Pavel Kopecký - (Author)
  • Peter Matiasovsky - (Author)
  • Riccardo Paolini - (Author)
  • Richard Slávik - (Author)
  • Robert Cerny - (Author)
  • Sina Akhavan Shams - (Author)
  • Sophie Moissette - (Author)
  • Targo Kalamees - (Author)
  • Teresa Stingl Freitas - (Author)
  • Thibaut Colinart - (Author)
  • Thomas Bednar - (Author)
  • Tommy Bunch-Nielsen - (Author)
  • Vaclav Koci - (Author)
  • Valentina Marincioni - (Author)
  • Villu Kukk - (Author)
  • Weinan Gan - (Author)
  • Xiaolin Chen - (Author)
  • Xing Hu - (Author)
  • Yohan Plantec - (Author)
  • Yue Xie - (Author)
  • Zara Huijbregts - (Author)
  • Hans Janssen - (Author)
  • Staf Roels - (Author)

Abstract

Heat, air and moisture (HAM) models allow efficient simulation of the building components’ hygrothermal behavior. However, specific model assumptions, simplifications and approximations, as well as users’ preferences, biases and mistakes in the implementation of material properties, boundary conditions, etc., may yield divergences among results from different models. The lack of a standard framework for HAM model quality assessment results in inconsistent benchmark cases and assessment methods in previous studies. Thus, this state-of-the-art empirical round robin validation targets to test the robustness and the reliability of HAM models in predicting one-dimensional hygrothermal responses of building components under controlled boundary conditions. It ran from 2023 to 2024, was coordinated by KU Leuven, and achieved participation of 38 groups from 19 countries. A comprehensive experimental dataset serves as the “correct answer”, and simulation results from other participants form “reference answers”. Since the boundary conditions are simple and explicit, the material properties’ implementation has the main impact on the simulated hygrothermal responses. Most models prove to be robust, particularly in the heat transfer prediction. The moisture transfer prediction, on the other hand, looks more challenging. Reliability is also achieved by most models, as the deviations between simulation and experimental results are reduced when actual measured material properties are implemented as inputs. However, inappropriate and/or incorrect implementations are also observed. More in-depth investigations are performed for a better understanding of HAM-simulation tools and achieving their better performance in predicting and interpreting the hygrothermal behavior of building components.

Details

Original languageEnglish
Article number112867
JournalBuilding and environment
Volume276
Early online date15 Mar 2025
Publication statusPublished - 15 May 2025
Peer-reviewedYes

External IDs

ORCID /0000-0003-0771-6370/work/180879540
unpaywall 10.1016/j.buildenv.2025.112867
Scopus 105001505936

Keywords

Keywords

  • HAM model, Validation, heat, air, and moisture, hygrothermal response, round robin, simulation, HAM model, Heat, air, and moisture, Hygrothermal response, Round robin, Simulation, Validation