A note on finite embedding problems with nilpotent kernel

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Arno Fehm - , Chair of Algebra (Author)
  • Francois Legrand - , Normandie Université (Author)

Abstract

The first aim of this note is to fill a gap in the literature by proving that, given a global field K and a finite set S of primes of K, every finite split embedding problem G -> Gal(L/K) over K with nilpotent kernel has a solution Gal(F/K) -> G such that all primes in S are totally split in F/L. We then apply this to inverse Galois theory over division rings. Firstly, given a number field K of level at least 4, we show that every finite solvable group occurs as a Galois group over the division ring H-K of quaternions with coefficients in K. Secondly, given a finite split embedding problem with nilpotent kernel over a finite field K, we fully describe for which automorphisms sigma of K the embedding problem acquires a solution over the skew field of fractions K(T, sigma) of the twisted polynomial ring K[T, sigma].

Details

Original languageEnglish
Pages (from-to)549-562
Number of pages14
JournalJournal de théorie des nombres de Bordeaux / Centre de Recherche en Mathématiques de Bordeaux et Algorithmique Arithmétique et Expérimentale, Université Bordeaux 1
Volume34
Issue number2
Publication statusPublished - 24 Oct 2022
Peer-reviewedYes

External IDs

Scopus 85140205873

Keywords

Keywords

  • Division rings, Finite embedding problems, Global fields, Quaternions, inverse Galois theory, division rings, quaternions, global fields