A multi-stage leakage aware resource management technique for reconfigurable architectures

Research output: Contribution to book/conference proceedings/anthology/reportConference contributionContributedpeer-review

Contributors

  • Nam Khanh Pham - , National University of Singapore (Author)
  • Amit Kumar Singh - , National University of Singapore (Author)
  • Akash Kumar - , National University of Singapore (Author)

Abstract

Shrinking size of transistors has enabled us to integrate more and more logic elements into FPGA chips leading to higher computing power. However, it also brings serious concern to the leakage power dissipation of the FPGA devices. One of the major reasons for leakage power dissipation in FPGA is the utilization of prefetching technique to minimize the reconfiguration overhead (delay) in Partially Reconfigurable (PR) FPGAs. This technique creates delays between the reconfiguration and execution parts of a task, which may lead up to 44% leakage power of FPGA since the SRAM-cells containing reconfiguration information cannot be powered down. In this work, a resource management approach containing scheduling, placement and post-placement stages has been proposed to address the aforementioned issue. In scheduling stage, a leakage-aware cost function is derived to cope with the leakage power. The placement stage uses a cost function that allows designers to decide a trade-off between performance and leakage-saving. The post-placement stage employs a heuristic approach and shows further improvements. Experiments show that our approach can achieve large leakage savings for both synthetic and real life applications with acceptable extended deadline. Furthermore, different variants of the proposed approach can reduce leakage power by 40-65% when compared to a performance-driven approach and by 15-43% when compared to state-of-the-art works.

Details

Original languageEnglish
Title of host publicationGLSVLSI '14: Proceedings of the 24th edition of the great lakes symposium on VLSI
PublisherAssociation for Computing Machinery (ACM), New York
Pages63-68
Number of pages6
ISBN (electronic)978-1-4503-2816-6
Publication statusPublished - 2014
Peer-reviewedYes
Externally publishedYes

Publication series

SeriesGLSVLSI: Great Lakes Symposium on VLSI

Conference

Title24th Great Lakes Symposium on VLSI, GLSVLSI 2014
Duration21 - 23 May 2014
CityHouston, TX
CountryUnited States of America

Keywords

Research priority areas of TU Dresden

ASJC Scopus subject areas

Keywords

  • fpga, leakage aware, resource management